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Abstract 

The relaxation spectra in polymers arise from the existence of many possible modes for dis- 
sipating the strain energy raised by the imposed force. These modes are made up by coupling the 
simplest and fastest mode of relaxation involving the rotation of a conformer, typically repre- 
sented by the picosecond rotation of the carbon to carbon bond. This fast relaxation process can- 
not take place easily in the condensed state crowded by the densely packed conformers, 
necessitating cooperativity among them. The domain of cooperativity grows at lower tempera- 
tures, toward the infinite size at the Kauzman zero entropy temperature. From the temperature 
dependence of the domain size, the well-known Vogel equation is derived, which is numerically 
equivalent to the empirical WLF and free volume equations. The molar volume is a crucial factor 
in determining the molar free volume and, therefore, in determining the Tg of a material. The 
molar ACp is proportional to the logarithmic molar volume, and is greater for a polymer with a 
higher Tg, but ACp per gram for it is smaller, as it is proportional to (logM) divided by M, where 
M is the molecular weight of the conformer. 

From this theory, it is possible to predict the dependence of the characteristic relaxation time 
on temperature if either Tg or the conformer size is known, since one can be derived from the 
other. From the Vogel equation with all parameters thus derived, it is possible to obtain a master 
relaxation curve and the spectrum from one set of dynamic mechanical data taken at one fre- 
quency over a range of temperatures. 

Whereas the linear viscoelastic principle is limited to small strains only, a real polymer is 
often deformed well beyond such a limit. Above a certain limit of strain energy level, linear vis- 
coelastic deformation is no longer possible and the plastic deformation takes over. However, be- 
cause a polymer typically manifests a spectrum of relaxation times, its behavior is a combination 
of viscoelastic and plastic behaviors. The ratio between the two behaviors depend on the rate of 
deformation, and can be precisely predicted from the linear viscoelastic relaxation spectrum. 
The combined behavior is termed viscoplastieity, and it applies to a wide range of practically im- 
portant mechanical behaviors from the flow of the melt to the yield and fracture of glassy and 
crystalline solids. 
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986 MATSUOKA: THEORY OF VISCOELASTICITY 

1. What do we mean by the 'relaxation process'? 

1.1. On the experimental scale 

When a mechanical test specimen is made to deform, work is done on each 
point in the body by the applied force over the distance that each point has trav- 
eled. Let us consider, for the sake of simplicity, that the material behaves as a 
perfectly elastic body, i.e., all of the work done on it is returnable when the ap- 
p|ication of the force is terminated. The stress is a force experienced within the 
body expressed as the force per unit area. The strain is the relative deformation 
experienced by the body expressed as the deformed distance per unit length. 
The integral of the stress over the strain is the mechanical work per unit volume, 
and in the elastic body it is equal to the strain energy density. At any point 
within the body, the type and the value of a stress depend on the plane of cross 
section. For example, a cross section perpendicular to the direction of the up= 
plied tension is under a uniform tensile stress without any shear component 
present. However, another cross section cutting the same body in a 45 ~ angle to 
the direction of the tensile force would be under the shear stress with no tensile 
components present. In an arbitrarily chosen cross sectional plane, there are 9 
components of stresses and strains, but the stored elastic strain energy is 
uniquely determined by a combination of the geometry and the boundary con- 
ditions for the applied forces. In thermodynamic terms, the stored elastic 
energy is a form of Gibbs free energy. 

While a typical solid material behaves as an elastic body, a typical fluid 
flows as soon as the stress is applied. In fluids, the work of deformation is im- 
mediately dissipated and transformed into heat. Polymers exhibit viscoelastic 
behavior, a combination of the elastic and dissipative behaviors. Among the 
simple viscoelastic experimental methods is the stress relaxation test, in which 
the test specimen is suddenly deformed at onset and maintained throughout. 
The stress will rise initially, and will decay as the elastically stored energy will 
diminish as a consequence of the fluid-like dissipation mechanism. The time- 
dependent stress divided by the imposed (constant) strain is the relaxation 
modulus. In another simple experiment called the creep experiment, the stress 
is maintained constant while the strain continues to increase with time. To treat 
the viscoelastic behavior with an empirical and intuitive model for the contin- 
uum, often a combination of springs and dashpots are invoked for the elastic 
and dissipative responses, respectively. The relaxation modulus with a single 
relaxation time can be modeled by a spring and a dashpot in series (the Maxwell 
model), but this model would behave as a viscous fluid under a constant stress 
as in a creep experiment. A parallel combination of a spring and a dashpot 
(Voigt model) predicts the infinite initial stress in the relaxation experiment, 
while predicting a finite strain after infinite time of testing. Sadly, no combina- 
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tion of any numbers of springs and dashpots, including degenerate elements, 
e.g., dashpots alone, can describe a self-consistent linear viscoelastic behavior. 
This can be shown quite explicitly by requiring for the complex dynamic me- 
chanical modulus to be equal to the reciprocal of the complex dynamic 
compliance, the condition that leads to a very important but not widely ac- 
knowedged relationship between the relaxation modulus, G(t), and the creep 
compliance, J(t): 

t 

~ G(t-x)J(x)dx = t 
o 

(1) 

which must be true at any time t. The variable x in this equation is the so-called 
dummy variable of integration that sweeps from 0 to the real time t for the inte- 
gral. No combination of springs and dashpots can satisfy Eq. (1), and so they 
disqualify as a model for linear viscoelasticity. An important corollary to this 
equation is that the form of the creep compliance is mathematically uniquely 
determined if the relaxation modulus is known, but the two as a rule are not re- 
ciprocals of each other, i.e., 

G(t)J(t) * 1 (2) 

It is customary to define the relaxation time as the time constant of a 'reac- 
tion' process in which the stress is allowed to decay under the rigidly held de- 
formation, i.e., 

1 1 d~  
x ~ dt (3) 

where c~ is the time dependent stress at a given strain. Dividing ~ by the experi- 
mental (time-independent) strain will obtain the relaxation modulus, and the so- 
lution of Eq. (3) is given by the formula: 

G(t)= Go e xp ( - t )  (4) 

However, real experimental data seldom fit a simple equation such as Eq. (4). 
Instead, the stress relaxes over many decades gradually, as if the time constant 
"c is continuously shifting as time passes. One way of describing this type of be- 
havior is to assume that there are not one but many relaxation mechanisms with 
varying degrees of intensity operating simultaneously within the body, so the 
overall modulus could be expressed in terms of a distribution, or a spectrum, of 
relaxation times, i.e., 

(5) 
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In this equation, the relaxation modulus is assumed to consist of the sum of 
individually relaxing elements each with the relaxation time xi and the relative 
intensity Gi. It is important to note that Eq. (5) does not necessarily mean that 
the strains in a mechanically heterogeneous domains are equal and uniform. 
Nor does it require that the stress be the sum of G~ exp(-t/xi) times the macro- 
scopic (experimental) strain. Distributions of stresses and strains would have to 
be obtained usually through numerical computation. However, the strain energy 
tends to quickly become homogeneous. This is why Eq. (5) is found to be a 
good empirical formula in surprisingly many examples of heterogeneous systems, 
including such systems as semicrystalline polymers and polymer alloys [1 ]. 

A body of a homogeneous polymer consists of many relaxing units which 
can cooperatively relax as a larger relaxing unit with a longer relaxation time. 
Such a concept of multimode relaxation can be realistically modeled by consid- 
ering the cooperative modes of relaxation among the smallest units of relaxa- 
tion. The smallest unit of relaxation will be later described in molecular terms. 
Cooperativity is needed when these units are crowded into a dense space such 
that each unit can relax only if its neighbors can relax together. The probability 
for each unit to relax becomes smaller when such cooperation from a greater 
number of neighbors becomes necessary in a denser environment. In order for 
these units to synchronously relax, the cooperative relaxation time of n such in- 
dividual units together must be the n-th power of each individual relaxation 
time, or x n, where x is the relaxation time of each unit if it were able to relax 
independently. According to this model of cooperative relaxation, a domain 
consisting of n individual units will be able to exhibit n different modes of re- 
laxation, exhibiting a spectrum of relaxation times starting with -c and all the 
way up to x n, the latter being the strongest, corresponding to the frequency for 
the loss maximum. 

1.2. On the molecular scale 

In the above discussion for the relaxation process in the continuum, a refer- 
ence was made to a relaxing unit as the smallest unit that would exhibit the 
shortest relaxation time. Polymer molecules can undergo many different types 
of deformations involving many different size domains, but all kinds of changes 
in shapes can be interpreted in terms of the changes in their molecular confor- 
mations. The smallest unit that would contribute to the changes in the confor- 
mation of a polymer chain is termed a conformer, which Wunderlich chose to 
call a flexible bead [2]. In a vinyl polymer, a monomeric unit would consist of 
two conformers at least, and if endowed with a flexible side group the number 
may be greater. A rule for identifying individual conformers in a particular 
polymer will be introduced later in this article. The immediate question now is 
to ask what is the mechanical relaxation for one conformer and how does that 
relate to the macroscopic relaxation that can be measured in the laboratory? 

The results of a molecular simulation study on deformation of atactic 
polypropylene, and later on other polymers as well, by Theodorou and Suter 
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[3], are very important. According to this study, the rotation of the main chain 
bond represents the softest degree of freedom and it is the overwhelmingly pre- 
dominant mode of deformation. The relaxation of a conformer would involve 
mostly a bond rotation from one stable energy state to another under the influ- 
ence of a stress field. It is not necessary to assume that the relaxation is always 
from the gauche to the trans conformation, although it is expected to be more 
prevalent in that direction than in the opposite direction from the gauche to trans 
conformation. 

In order to rotate from one stable conformation to another, the bond between 
two conformers will have to be strained, causing the angular potential energy to 
rise. Ab6, Jernigan and Flory [4] have shown that the inner bonds between 
methylene units in a butane molecule will have to pass through the energy maxi- 
mum of about 3 to 3.5 kcal mo1-1 of bonds. A reaction process, in this case the 
relaxation of the conformational change, is controlled by the relative abundance 
(or scarcity) of those bonds which are in the highest energy state, as it makes 
up the bottleneck for the conformer to transit from one state to another. The 
methodology of calculating the process rate by invoking the statistical prob- 
ability for the most scarce species in the path is the same as the classical meth- 
odology of calculating the nucleation rate from the statistical probability for the 
most scarce, critical size nuclei. The Boltzmann-Maxwell equipartition theory 
maintains that the population of a microstate is proportional to exp(-E/kT), 
where E is the energy, k the Boltzmann constant and Tthe absolute temperature. 
The energy difference between the stable conformation and the maximum twist 
energy of the bond between the two interior methylene units constitutes the en- 
ergy for determining the relative abundance of the highest and least abundant 
energy state, and this highest energy state in the reaction path is called the acti- 
vated state, and the energy level, in this case 3~3.5 kcal, is the activation en- 
ergy or the energy barrier for the conformer relaxation. The classical rate 
constant, k, is formulated by the equation: 

1 dN k. exp(__~T ) (6) k = - ~  d--7= 

where N is the number of those conformers in the ground state. A~ is the energy 
difference between the activated and ground states. The term k* is the efficiency 
term which depends on the intensity of libration for the bonds in question. 

The relaxation time x is defined as the time constant for this 'reaction', and 
is the reciprocal of the rate constant k. The 'intensity' of the relaxation process 
is proportional to the relaxation modulus, hence 

1 1 dG(t) 
m 

x G(t) dt 
(7) 

and Eq. (4) is a solution of Eq. (7). 
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At a high enough temperature, the rotational kinetic energy is so high that 
the reaction rate calculated from Eq. (6) reaches or exceeds the librational fre- 
quency, i.e., the most vibrating bonds can pass through the activated state back 
and forth. In such a state, the energy barrier is small enough in comparison to 
kT and the relaxation process as we know it no longer occurs. The critical reac- 
tion rate k* is such a limiting frequency (in radians/s) and the critical relaxation 
time x* in seconds is set as the reciprocal of k ~ The critical temperature T*, as 
will be empirically derived in the discussion to follow, turns out to be ca. 
500~ which is higher than the degradation temperature of most polymers, 
meaning that polymer chains will be destroyed before T" is reached. The actual 
estimate for the value of x" turns out to be about 2x10-12s or 2 picoseconds at 
500~ and about a decade longer at 100~ and 7xl0-Hs at 25~ 

2. Intermolecular cooperativity 

2.1 Free volume and excess entropy in the condensed state 

The simple model of molecular dynamics has been presented above for the 
relaxation of polymer molecules as the conformer bond angles change from one 
position to another in presence of the force filed [5]. The relaxation time based 
on this model, however, is in the picoseconds range, a far cry from the range of 
our interest. Moreover, this simple model involves a constant energy barrier, 
leading to an Arrhenius type dependence on temperature for the relaxation 
time, whereas the real polymers (and many nonpolymeric liquids) exhibit the 
Vogel-type dependence [6] characterized by the ever-increasing apparent activa- 
tion energy as the temperature is decreased. Thirdly, the model predicts that all 
polymers would exhibit the same T,. And finally, this model is a single relaxa- 
tion time model, while real polymers exhibit a broad spectrum of relaxation 
times. The incorporation of the concept of intermolecular cooperativity among 
the conformers will correct all of the above shortcomings. 

For polymer molecules, the complete rotational relaxation of a conformer 
without the interference from neighboring conformers would be possible at the 
temperature we define as T* (ignoring for convenience a possibility of chemical 
degradation at such a temperature, which in real polymers would take place 
even in the inert atmosphere). At a progressively lower temperature below this 
T*, the density increases, accompanied by a decrease in the intermolecular free 
space, and the rotational relaxation by a conformer becomes increasingly frus- 
trated by the interfering neighbors, to such a degree that only through a well 
synchronized simultaneous relaxation with those neighbors, can the conformer 
undergo a conformational change that would permit to dissipate the elastically 
imposed energy. The probability of such cooperative relaxation among z con- 
formers can be calculated by multiplying the probability of relaxation for each 
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conformer z times, hence the cooperative relaxation of z conformers together 
would be x ~. In this model, the domain size, z, becomes greater as the tempera- 
ture is decreased. 

To compare the relaxation time of a conformer with and without the neigh- 
bors' interference, the two equations are shown below. The first is for the 
relaxation without the interference, i.e., no cooperativity is considered. This is 
an Arrhenius equation with the activation energy of A~t cal mo1-1 of conformer, 

lnx = lnx* + Ag R-T (8) 

where T is the temperature, x is the relaxation time, R the universal gas con- 
stant, and the asterisk * is referred to the thermodynamic condition of the high 
temperature high frequency limit described above. When the cooperativity is in- 
troduced, the domain size, z, is determined by the state of intermolecular free 
space, or the free volume. The domain size z is a unique function of pressure 
and temperature unless, as in the glassy state, the thermodynamic equilibrium 
is broken. For the cooperative relaxation, then, we obtain 

lnx = lnx* + AFt(RT R-~) (9) 

Even though the difference between the above two equations seems insignifi- 
cant at a first glance, they are really very different. Eq. (9) is no longer an Ar- 
rhenius equation because the domain size, z, is a function of temperature, 
growing larger at lower temperatures. The apparent activation energy increases 
at lower temperatures. The apparent activation energy is obtained from the 
slope of a straight line drawn between the points (1/RT*, lnz*) and (1/RT, lnz) 
in the plot for lnx vs. 1/RT; it is not the changing slope of the plot of lnz vs. 
1/RT. The latter is d(lnz)/d(1/RT), which includes the values of dz/dT, and as a 
result an unreasonably large value in the range of hundreds of kcal's will be ob- 
tained. 

The gauche conformation, being a higher energy state, has a larger average 
volume than the trans conformation. The population of a higher energy state 
will decrease with a decreasing temperature, while the population in the lower 
energy state will increase. If thermodynamic equilibriam can be maintained 
down to 0 K without 'freezing up' into the glassy state, the volume in excess of 
the lowest energy state will decrease to 0 at 0 K. In this context, the excess vol- 
ume at some temperature TK would be T/T" times the excess volume at T*. No 
cooperativity has been considered, so the domain size is 1 at any temperature 
O<T<T*. 

In real polymer systems, as the temperature is lowered, the domain size z in- 
creases and the relaxation time C increases, until even the cooperative relaxa- 
tion becomes so difficult that the system is no longer able to continue to densify 
with a typical dV/dT for the liquid, ca. 10 -3 deg -1. The V-T plot will depart 
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from that of the liquidus line with a solid like expansion coefficient, ca. 
10 -4 deg -~. The new state of nonequilibrium is of course the well known glassy 
state. It is well known from the work of many investigators on physical aging 
phenomena [7] of the glassy state that the fictive temperature Te depends on how 
long the glassy state has been held in a nonequilibrium state; the longer the ag- 
ing, the closer the value of Tf to the aging temperature, but that waiting for an 
infinite period at below some limiting temperature will not lead to Tf= T, where 
T is well above 0 K. This limiting temperature, or the low temperature limit for 
the liquid-like behavior in equilibrium, is the Kauzman temperature [8], or the 
temperature that was extrapolated along the equilibrium liquidus line for the en- 
tropy to reach zero. It is about 50~ below the experimentally determined Tg by 
DSC. The C~ parameter in the WLF equation [9] is supposed to be 52~ and 
this parameter corresponds to the difference between Tg and the Kauzman tem- 
perature. We believe that the Kauzman's zero entropy temperature is well above 
0 K because the increasingly frustrated tendency to reach equilibrium results in 
the greater rate of entropy decrease than the rotational isomeric calculation 
would predict. If this is true, then at the zero entropy temperature somewhere 
50~ below Tg, there would be still a substantial number of gauche conformers 
present, even though the excess entropy is extrapolated to be zero. Monnerie et 
al. [10] have shown for polystyrene that only 30% are in the trans conformation 
at Tg. In summary, if the aging is allowed at above the Kauzman temperature, 
thermodynamic equilibrium is eventually reached, and the fictive temperature 
will be equal to the aging temperature. If the aging is allowed at the Kauzman 
temperature, it will take an infinite time to reach equilibrium. The domain size 
will be infinite in this case. If aging is allowed at below the Kauzman tempera- 
ture, the glassy state will never reach equilibrium. 

At the Kauzman temperature, which we define as To at this point, the equi- 
librium excess volume is zero, and the equilibrium relaxation time is infinity. 
There is a thermodynamic correspondence between the conformational state at 
0 K obtained by the RIS (rotational isomeric systems) calculation and the ther- 
modynamic state in the real liquids in equilibrium at To K. Assuming the 
domain size z to be inversely proportional to the excess volume, scaled from 
T* to To instead of from T* to 0 K, or we obtain: 

T T* - To (10)  
Z ~ - -  �9 - -  T* T-To 

Substitution of Eq. (10) into Eq. (9) will obtain: 

lnz=lnx*+A~t T*-T~ 1 R  T* T-To T*I- tTo (11) 

and by defining Akt* to be 
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A~" = AI.t �9 - -  T" -To (12) 
T. 

The Vogel equation is obtained: 

lnx=Inx*+ " T To T" To (13) 

As it is well known, the Doolittle's free volume equation [11] calls for lnx to 
be inversely proportional to the fractional free volumef. It is another form of 
describing the temperature dependence of the relaxation time. The Vogel equa- 
tion can be obtained from the Doolittle equation by assuming the fractional free 
volumef=o~f(T-To), where CXe is the thermal expansion coefficient of the frac- 
tional free volume, and setting it to be equal to R/A~t'. The WLF equation, an 
empirical formula well known to polymer scientists, is another form of the free 
volume equation with two empirical parameters that can be evaluated in terms 
of G~f and To. Therefore, it is another form of the Vogel equation. The meaning 
of the Doolittle free volume is slightly different from our excess volume that is 
associated with the higher energy conformations. The Doolittle formula pre- 
dicts the relaxation time as the unique function of free volume, and the entire 
temperature dependence of T is ascribed to the free volume. Our excess volume 
is different in that even at the same level of excess volume (and z), the relaxation 
time still depends on the temperature. Our excess volume enables us to success- 
fully predict the relaxation behavior in the nonequilibrium state, where the vol- 
ume is not uniquely dependent on the temperature. The Doolittle formula does 
not agree with those aging data taken over a wide range in temperature and ag- 
ing time. 

2.2. Excess entropy that drops faster than the conformational entropy 

Another way of deriving the Vogel equation, Eq. (13), is to go through the 
calculation of the excess entropy. Let us assume for the moment that each con- 
former can take C~ different conformations. The conformational entropy would 
be NAlnC1, where NA is Avogadro's number. If all z conformers in each domain 
are 'locked' together, however, the relaxation process would be z-th power times 
more difficult, and the effective conformational entropy would be NA/z.lnC~. In 
other words, the domain size z is inversely proportional to the effective confor- 
mational entropy, and substituting this into Eq. (9) we obtain: 

�9 {solSx 1~*1 ] lnx = lnx* + zx~t[R--f ,/ (14) 
\ 

where so is the RIS conformational entropy that could relax independent of 
neighboring conformers, and Sx is the effective excess entropy in the coopera- 
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tivity environment. Equation (14) is essentially the equation introduced by 
Adam and Gibbs [12], though their implied cooperativity is among the con- 
formers in the same chain and their Sx is simply called the conformational en- 
tropy. With the argument advanced for the temperature dependence of z above, 
the temperature dependence of Sx/s~ can be derived: 

s~= T T*-To (15) 
Sx T* T -  To 

which is substituted into Eq. (14) to obtain the Vogel Equation, Eq. (13). 
Researchers familiar with thermal analysis of polymers are well acquainted 

with the important quantity ACp, that is the difference between the liquid-like 
specific heat above Tg and the solid-like specific heat below Tg. This quantity is 
really related to Sx above, and not s~. Thus, 

T 

Sx= I ACPdT (16) 
1"o T 

is true above To in the equilibrium state. Below To, Sx takes up whatever the 
value it was at Tg, but the equilibrium value of Sx is zero. Sx is compared to the 
(RIS) conformational entropy, so, which is given by the formula: 

T 

& :  I ~dT  (17) 
o 

where Cp is the specifi~ heat associated with the conformational enthalpy. While 
so takes from 0 K to T* K to reach the critical entropy at T*, Sx arrives there 
starting from To. A scaling scheme setting a relation: 

T 
* 

ACp- - -  Cp (18) 
T*-To  

is true for all T's from To to T*. Thus Eq. (12) is no longer a purely empirical 
equation at this point but it is now supported by a reasonable physical meaning, 
i.e., that AI a* is the rotational energy barrier calculated on the basis of the 
methylene bond rotation of butane, but A~t is the real value which is greater than 
Ala* because of the added requirements for the intermolecular cooperativity. 
Thus Ala* and not Ag, is a universal number common to many polymers. A~t, on 
the other hand, depends on the kind of polymer, and higher the Tg, the greater 
is the value of Ag. The same statement can be made on ACp per mol of con- 
former, but not per gram of polymer. Because the conformer sizes vary, the 
mass of a tool of conformers vary. A discussion on the relationship between ACp 
per gram of polymer vs. Tg will have to wait until the relationship between the 
conformer size and Tg is discussed in the subsequent section. 
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In Appendix I, we have shown that the conformational Gibbs free energy 
q-' is much smaller than the excess enthalpy, i.e., q"x<</-/x, and, therefore, 
Wx<<TSx and Hx~ TSx. This is an im.portant conclusion because it allows us to 
apply the same scaling factor, T/(T -To), to the calculation of the excess en- 
thalpy, entropy, ACp, A~t, etc. in the cooperativity regime from the conforma- 
tional (RIS) enthalpy, entropy, cp, A~t*, etc. This scaling scheme is crucial in 
predicting the glass transition temperature and related physical parameters, as 
we will be showing in the following section, while adding a meaning in physics 
to the equations such as Eqs (12, 15, 18) and now, the equation for the excess 
enthalpy as well: 

T 
* 

H x - - -  hc (19) 
T'-To 

where Hx is the excess enthalpy and he is the conformational enthalpy corre- 
sponding to the RIS type calculation without accounting for the cooperativity 
aspect. The excess enthalpy Hx is an important thermodynamic quantity to the 
researchers familiar with thermal analysis, because the 'heat flow' in DSC is a 
direct measure of ACp, which is the derivative, dHx/dT. It follows that hc is also 
nearly equal to T&, and thus the temperature dependence of & is the same as 
that of Cp. 

To summarize, at T* (-500~ all conformers can relax without cooperation 
from the neighbors, but as the temperature is lowered the excess enthalpy and 
entropy decrease faster than as predicted from the conformational probability 
by the factor z, the domain size. This increase in their temperature coefficients 
depends on the structure of a conformer, and can be scaled by the factor T*-To 
in place of T*. 

3. Chemical structure and T~ 

All of the discussions up to this point have been based on a mol, rather than 
a gram, of conformers. It makes a great difference which unit is being taken be- 
cause the molecular weight of conformers differs greatly. As a certain generali- 
zation can be made on tile law on the molecular size dependence of the entropy 
of vaporization, our excess entropy depends on the molecular size of the con- 
former. Considering the liquid state to be composed of the van der Waals vol- 
ume and the excess volume, the excess volume in one mol of a conformer can 
be compared with the volume of ideal gas with NA massless molecules. (NA is 
Avogadro's number.) The configurational entropy of one mol of ideal gas is 
equal to k lnV, and in our case this V is equal to the excess volume. If we assume 
the fractional excess volume to be proportional to the molecular volume, we ar- 
rive at the proportionality between the excess entropy and lnMc/p*, where Mc is 
the molecular weight of the conformer and p* is the density extrapolated to T*. 
The 'hole energy', our excess enthalpy, is also proportional to lnMJp*. Since 
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9" does not vary much (at least not nearly as much as Mo) from polymer to poly- 
mer, we expect that: 

Hx oc lnMc (20) 

and that 

T, 

T* - To 
_ _  oc lnMo (21 )  

i.e., the smaller the conformer, the lower the Kauzman temperature To. We can 
extrapolate this principle to the smallest possible conformer with its To=0 K, 
i.e., the domain size is 1 all the way down to 0 K. We call this molecular weight 
Mo. If we can empirically determine Mo, then Eq. (21) can be replaced by the 
really useful equation for predicting To from the conformer size: 

T* lnM~ 

T* - To lnMo 
(22) 

and, since To is about 50 K below T~, we now have obtained a formula for pre- 
dicting T~ from the chemical formula of a polymer. 

In Tables 1 and 2 the conformer sizes of various polymers are compared 
with the experimental values of T~. Assuming that Tg to be 50~ above the 
Kauzman temperature To, the best numbers for lnMo and T* in Eq. (22) were 
sought. It turns out that T*=773 K and 1nMc=2.26 are good choice, which 
would mean the last column termed 'Const' should be 1750. 

The column titled 'Mc' denotes the average conformer size and the value is 
entered as the molecular weight of the repeat unit divided by the number of con- 
formers per repeat unit, e.g., 54/3 for polymer 3 means its repeat unit has the 
molecular weight of 54, and consists of 3 conformers. A conformer is a unit 
whose rotation will make a difference in the chain conformation. For vinyl 
polymers (polymers 1-14), a conformer can be a methylene unit or a methylene 
unit with a hydrogen substituted by a group. Mc is a number average molecular 
weight of all conformers that make up a polymer. A carbon atom with a rigid 
substituent group must rotate together as a unit, i.e., as one conformer. Thus 
the polypropylene (polymer 5) repeat unit consists of 2 conformers, not 3. 1,4- 
polybutadiene (polymer 3) consists of 3 conformers: two methylene units and 
one C =C unit. However, 1,2-polybutadiene (polymer 4) consists of two con- 
formers, one methylene unit and the other a carbon atom with a double bonded 
ethylenic pendant. The latter having a much larger conformer than the former, 
exhibits a 65~ higher Tg. A similar consideration on comparing gutta percha 
(polymer 7) and cis-polyisoprene (polymer 8), both with the repeat units with 
the same molecular weight, leads to the Tgs separated by 59~ Discussion of Tg 
for polyethylene will be postponed until after some aspects of the low-tempera- 
ture relaxation has been discussed later. 
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Table I Conformer size and T~ aliphatic polymers 

Polymer Me Tg T'-To lnMc Const. 

1 Polyethylene (-C- as a unit) 14/1 -110 660 2.64 1742 

2 Polyethylene (mix of-C- and -C-C-) 42/2 -25 586 3.02 1751 

3 1,4-Poly(butadiene) 54/3 -55 605 2.85 1750 

4 1,2-Poly(butadiene) 54/2 20 530 3.30 1749 

5 Polypropylene 42/2 -30 580 3.04 1765 

6 Polyisobutylene 56/3.5 -74 624 2.77 1728 

7 Gutta percha 68/3 -10 560 3.12 1748 

8 cis-Polyisoprene 68/4 -69 619 2.83 1753 

9 Poly(4-methyl pentene) 85/3 29 521 3.34 1742 

10 Polyvinyl chloride* 62/2 90 460 3.43 1577 

11 Polystyrene 108/2 100 450 3.93 1769 

12 Poly(ct-methyl styrene) 119/1 180 370 4.78 1768 

13 Poly(trifluoro-chloroethylene) 118/3 79 471 3.67 1728 

14 Polyvinyl acetate 86/3 29 521 3.36 1748 

15 VDCN-vinyl acetate** 164/2 179 371 4.41 1636 

16 VDCN-vinyl formate 150/2 152 398 4.32 1718 

17 VDCN-vinyl propionate 178/2 176 374 4.49 1678 

18 VDCN-vinyl benzoate 225/2 186 364 4.72 1719 

19 VDCN-methyl methaerylate 178/2 145 405 4.49 1818 

20 VDCN-vinyl aeetyl chloride 199/2 167 383 4.60 1761 

21 VDCN-vinyl pivallate 206/2 171 379 4.63 1757 

22 Polyoxymethylene 30/2 -73 623 2.71 1687 

23 Polyoxyethylene 44/3 -67 617 2.69 1657 

24 Polyoxypropylene 58/4 -75 625 2.67 1671 

25 Polyoxybutylene 72/5 -88 638 2.67 1701 

26 Polyvinylmethyl ether 58/3 -22 572 2.96 1694 

27 Polyvinylethyl ether 72/4 -33 583 2.89 1685 

28 Polyvinylisopropyl ether 86/4 -12 562 3.07 1724 

29 Polyvinylbutyl ether 100/6 -56 606 2.81 1704 

30 Polyvinylhexyl ether 128/8 -74 624 2.77 1730 

31 Polymethyl methacrylate 100/2 105 445 3.91 1741 

32 lsotaetie PMMA 100/3 46 504 3.51 1767 

33 Polyethyl methacrylate 114/3 65 485 3.64 1764 

34 Polypropyl methacrylate 128/4 35 515 3.47 1784 

35 Polymethyl acrylate 86/4 9 541 3.07 1660 

36 Poly(t-butyl acrylate) 132/5 31 519 3.27 1698 
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Table 2 Conformer size and Tg aromatic polymers 

Polymer Me Tg T*-To lnMc Const. 

37 Polyphenylene sulfide 108/2 110 440 3.99 1755 

38 Polyphenylene oxide 92/2 90 460 3.83 1761 

39 Polyethyleneterepht halat e 182/5 64 486 3.59 1746 

40 Polycarbonate 254/3 147 403 4.44 1788 

41 Polyether etherketone 288/3 158 392 4.56 1790 

42 Polysulfone 444/4 187 363 4.71 

43 Polyether imide 596/4 200 350 5.00 1750 

44 Polyimide (PMDA) 207/1 222 328 5.33 1749 

45 Polyether sulfone 232/1 225 325 5.45 1770 

46 Poly(tri-methyl phenylene ether) 172/1 210 340 5.15 1750 

47 Kevlar 242/1 235 315 5.49 1729 

48 B+F** 315/2.5 187 363 4.84 1755 

49 C + F  376/2 210 340 5.24 1780 

50 A + D  358/2.5 195 355 4.96 1762 

51 B + D 420/1.5 243 307 5.63 1730 

52 C + D  480/3 310 240 7.29 1750 

53 A + E  434/5 148 402 4.46 1794 

54 B + E  496/4.5 172 378 4.70 1778 

55 C + E  540/3.5 205 345 5.04 1730 

56 A + F  254/3 147 403 4.44 1788 

** For the copolymers from 48 to 56. 
A: bisphenol A 
B: bisphenol AP 
C: fluorene 
D: terephthalate + isophthalate 50/50 
E: 2,2\(fm-biphenyl carboxylate) 
F: carboxylate 

Ph: phenyl group, bPA: bis-phenol A, slf: aromatic sulfone, Im: an imide group = 1 conformer; 
-O[bPA]O- = 2 conformers, and -OPh- = 1 conformer; 
* For PVC, if the density is considered 10% greater than others because of chlorine, the value of 
the constant becomes 1750. 

A repeat unit (the monomeric unit) in many vinyl polymers consists of two 
conformers. One is the methylene unit. The other is a carbon atom in the main 
chain plus a rigid substituent group. This carbon atom, being trifunctional, is 
not considered to be one conformer by itself but it is part of a large conformer 
in combination with the substituent group, that can participate in a conforma- 
tional change of the main chain. Sometimes a substituent group itself is capable 
of conformational changes, such as the polyvinyl acetate (polymer 14) mono- 
mer units. Conformational changes within the acetate group are necessary in or- 
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der to rotate the bonds in the main chain because of the dense packing of chain 
segments. In this case, the conformers are three: -CH2-, - C H ( - ( C = O ) - ) - ,  
and -O-CH3 groups. The second conformer is a little difficult to see, but if one 
adheres to the rule that a trifunctional carbon cannot be a conformer by itself, 
it clearly is the structure. An independent check for the number of conformers 
in a repeat unit can be made from the data on its 13 transition. The 13 transition 
is a local mode relaxation process and is usually observed below the glass tran- 
sition temperature, although the glassy environment is not a necessary condition 
for this to be observed. The glassy state is formed as the conformers become 
trapped by the neighbors, as a consequence of the increased packing density af- 
ter the cooling. For polymers with conformers of mixed kinds, the largest con- 
former is the easiest to become pinned by the neighbors. Relaxation of all of 
these conformers, large and small, is possible in the glassy environment if all 
rotate simultaneously. The 13 transition as presented here involves intramolecu- 
lar cooperation among conformers in the same chain molecule. The domain of 
intramolecular cooperativity is between the two nearest largest conformers 
along the chain, i.e., one complete repeat unit, typically. Unlike an intermo- 
lecular cooperative domain, this domain size remains fixed when the tempera- 
ture is changed. The activation energy is constant and it is the activation energy 
of one bond, Ap.*, times the number of conformers in the repeat unit, zp. The 
equation for the characteristic relaxation time for the 13 process; "rp, is obtained: 

lnz~ = lnx* + ~ �9 - ~ .  1 (23) 

The 13 process in polyvinyl acetate exhibits a constant activation energy of 
10 kcal over a wide temperature-frequency range. AFt* is 3.4 kcal for this poly- 
mer, and from Eq. (23) one obtains z13 of 3. We had estimated the number of 
conformers per repeat unit in polyvinyl acetate to be 3 from our analysis of the 
average size of conformers that would result in Tg of 29~ At a high frequency 
and high temperature, the intermolecular cooperative relaxation process (o~,) 
crosses with the 13 process. Note an important difference in the T* term for 
Eq. (21) and Eq. (13). The two formula will not meet at T*! This is because for 
the c~ process, it is a single conformer rotating at T*, whereas for the 13 process 
it is zp conformers rotating cooperatively in the same chain. The latter fre- 
quency being the slower, the two processes will merge at some temperature be- 
low T*. Beyond the point where the o~ and 13 frequencies merge, the 13 process 
is the slower of the two and the 13 barrier looms as the main barrier, as it takes 
over as the rate controlling process. In polyvinyl acetate, only the 13 peak is ob- 
served above this temperature and frequency. The temperature dependence of 
the cz and 13 processes for polyvinyl acetate are shown with a plot of the fre- 
quency for the dielectric loss maximum in Fig. 1 for the temperature range of 
the entire data points, and in Fig. 2 the crucial detail of the range where the two 
processes merge is shown. The lines have been calculated from Eqs 13 and 21. 
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Fig. 1 The ot and 13 relaxation processes in polyvinyl acetate; a plot of the frequency for di- 
electric loss maximum vs. temperature, The lines are calculated Vogel and Arrhenius 
plots with parameters as mentioned in the text 

Even though the conformers in polyethylene are the simple methylene units, 
or perhaps because of their simple structure, many possible mechanisms of re- 
laxation have been proposed, and they remain controversial. A prominent loss 
peak is observed at -110~ in both linear and branched polyethylenes and this 
relaxation is commonly known as the Y transition. The Y relaxation process has 
often been attributed to the local motion resembling a rotating crank shaft, ad- 
vocating an intra-, and not inter-, molecular cooperativity. The supporters of 
this view often have advocated the assignment of the 13 transition at -25~ to be 
the (intermolecular cooperative) glass transition in the amorphous region. Ac- 
cording to our model, the intramolecular cooperative relaxation involving two 
bonds simultaneously would bring the transition temperature to -110~ In the 
crank shaft motion, for example, such a possibility exists. This would involve 
two methylene units as one conformer in the glass transition, and in fact a con- 
former with Mc=28 will obtain Tg of-25~ according to Eq. (22), which is the 
13 temperature! There are a number of polymers with larger conformers than 
one methylene unit, such as polyisoprene, polyisobutylene and many other 
commercial rubber compounds, that exhibit T, at much lower temperatures than 
-25~ the fact that also supports that the 13 transition in polyethylene cannot be 
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Fig. 2 The detail of  Fig. 1 in the vicinity of the temperature and frequency that cc and ~ pro- 
cesses merge, above which point the intramolecular cooperative 13 process takes over 

the glass transition of the methylene units, but it is more likely to be the Tg for 
two methylene units acting as one conformer. Utilizing Eq. (22), Tg of -110~ 
is obtained for a conformer consisting of one methylene unit. This complicated 
picture is supported from the dielectric data [ 13] that the apparent activation en- 
ergy for the -110~ transition of linear polyethylene is much greater than that 
of branched polyethylene. We believe that the confusion arises from the fact that 
Tg of linear polyethylene and the local relaxation of crank shaft rotation (intra- 
molecular cooperative relaxation) overlap in the region of 1 kHz and -100~ 
To reiterate, methylene units can relax through the intramolecular cooperative 
motion (crank shaft rotation), and at the temperature-time regime of the ~/tran- 
sition, this and the intermolecular cooperative (~a) relaxation involving the 
methylene units in the different chain compete. Here again, above the frequency 
and temperature where the ct and 13 processes merge, the 13 process must take 
over. 

The conformer dangling at the end of a polymer chain has a higher energy 
than those in the middle of the chain [4]. A list of heats of fusion, estimated by 
Bunn [14], that includes species some of which are in the chain and some are 
at the end, show that those at the chain end have much higher values. Thus the 
melting point of the same conformer is lower if placed at end, and its Tg is ex- 
pected to be lower. We believe this to be the primary reason for the low Tg for 
polymers with very low molecular weight. The chain ends act as if they are sol- 
vent molecules in bringing down the overall Tg. A short branch attached to the 
chain molecule contains a high concentration of the end conformer, whereas 
with a longer chain the effect becomes less, just as the high concentration of the 
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ends in a low molecular weight specimens resulted in the lower T~ of the whole 
polymer. An increase in the number of smaller conformers in a branch will de- 
crease Tg by decreasing the overall average conformer size, reducing the effect 
of one large conformer at the trifunctional carbon atom. This is exemplified in 
examples 26-30, a series of polyvinyl alkylethers. Starting with Tg of-22~ for 
methyl ether, it goes down to -74~ for hexyl ether. With simple alkyl branch, 
Tg does not decrease indefinitely with increasing molecular weight. At about 
10 carbon atoms, Tg levels off. A presence of conformers other than C-C bonds 
would have to be analyzed with care. The ether linkage, for example, is known 
to have much smaller energy barrier, Ata*, ca. 1.5 kcal. Because we are averag- 
ing A~* times z, a smaller A~* of the oxygen link should show a smaller effec- 
tive conformer size. A smaller conformer size assignment is also taken for the 
end group; in this case the effective z being smaller. Looking at a series of alkyl 
ethers, 22-25, at the first glance, they seem to conform to Eq. (22) without re- 
quiring a modification. However, one notices that the constants at the last col- 
umn are consistently lower than 1750. In fact, the value of 1750 will be 
obtained if we change the numbers for Mc for Polymer 22 to 25 to the follow- 
ing: 30/1.8, 44/2.6, 58/3.5, 72/4.6. Note the conformer numbers have been re- 
duced by ~0.4, which would imply that A[a* for the ether link is almost half that 
of one C-C link. A similar exercise on the vinyl ethers we discussed earlier will 
also indicate that the numbers such as 2.7, 3.6, 3.8, 5.6, 7.8 will obtained 1750 
for the constant. Polymers 15-21 are an interesting group. VDCN stands for 
vinylidene cyanide and it has strong dipole interactions within the unit such that 
the whole group acts as a huge conformer, and this induces the alternating 
whole vinyl copolymer to also behave as one conformer. This is an excellent ex- 
ample to obtain high Tg values by making the effective conformer size large. 

Table 2 is a similar list for aromatic polymers. The aromatic ring has a large 
molecular volume, but its A~t* is about the same 3 kcal, so it can rotate easily at 
low temperature if given the necessary space, but when incorporated in the 
chain, the Tg of the polymer is high. The values of the constants in the last col- 
umn are about the common value of 1750, indicating that A~t* is about the same. 
An interesting challenge was presented when we tried to figure out how many 
conformers are in the repeat unit of the bis-phenol polycarbonate chain. Note 
that the 'constant' is a bit high. In order to obtain the value 1750, the conformer 
size would have to be 3.3 instead of 3. This was rationalized by saying that there 
are 4 linkages with 2 ether-like oxygen atoms in the main chain which will 
bring 4-2 • The activation energy for the 13 transition is 8 kcal, which 
can be divided up to 3 + 3 +  1 + 1 kcal. Apparently the limited movements at the 
bis-phenol links do not contribute into breaking the group into two conformers, 
though such a degree of freedom may play a significant difference in allowing 
for the classical plastic deformation. This is an interesting and useful subject 
from a practical view point but obviously it is not within the scope of this arti- 
cle. 
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The theory of conformer sizes affecting the relaxation and Tg is also appli- 
cable to thermosetting polymers. Hale et al. [15] point out that a multifunc- 
tional epoxy moiety, for example, would tend to form linear chains first, then 
crosslinks between the already large polymer chains at a later stage. This is 
completely consistent with the concept that a unit in the chain that have reacted 
trifunctionally to grow a side group has become a much larger conformer as a 
combined unit, exhibiting a higher Tg. This is a much more 'difficult' reaction, 
so it is slower. The kinetics of crosslinking reaction has been analyzed in such 
a light in Matsuoka's book [16]. At the later stage in which the real interchain 
bridging reaction takes place, the reaction rate is restricted by the ever decreas- 
ing entropy in a remarkably similar way that a physical aging takes place in 
glassy polymers (and nonpolymers). The climbing Tg in the early reaction stage 
has been analyzed by Hale et al. as a consequence of the polymer molecules 
growing linearly. Gelation occurs at about the point of transiting from the stage 
1 to the stage 2. 

In summary, the incorporation of larger conformers in a polymer chain will 
raise Tg, and vice versa, opening a useful way for creating a recipe for many 
candidate conformers of different sizes to arrive at a desired overall Tg, while 
controlling the average molecular weight between crosslinking points to main- 
tain the desired modulus and toughness in the rubbery state above Tg. Both Tg 
and ACp (per mol of conformer) increase with a larger size conformer. The 
value of ACp obtained by the calorimetry is always in units of calories per de- 
gree per gram, and not per mol. Since ACp per mol is proportional to lnMc, ACp 
per gram is proportional to (lnMc/Mc), and is smaller for the larger conformers 
with higher Tg. For a more thoroughly crosslinked system with a higher Tg, ACp 
per gram has been observed to become less. The theory presented here predicts 
that a polymer with Tg of 550~ will have ACp (per gram) of zero. This rule ap- 
plies to both thermosets and uncrosslinked polymers. 

4. Viscoelasticity data analysis 

Relaxation behavior is measured dielectrically or mechanically. There are 
many methods associated with either of the techniques. Viscoelastic properties 
of polymers are measured either by imposing a constant stress or strain to pro- 
duce the creep or relaxation data, or by measuring the steady state cyclical 
response to the cyclical strain or stress to obtain dynamic modulus or compli- 
ance. One additional useful method is to obtain stress-strain data under a 
constant deformation rate. Usually linear viscoelastic data are obtained under a 
very small strain amplitude. The stress relaxation and the dynamic mechanical 
tests are among the most common techniques for easily maintaining a small 
strain amplitude. 

An example of dynamic mechanical data is shown for a commercial polyiso- 
prene in Fig. 3. The data were obtained by subjecting the sample to the 
temperature from -100 to 70~ under the constant frequency of 1 radian/s. 

J. Thermal Anal., 46, 1996 



1004 MATSUOKA: THEORY OF VISCOELASTICITY 

Usually additional data are taken at several other frequencies, and analyzing 
how much each of the curves has been shifted from one frequency to another, 
the temperature dependence of the relaxation times is calculated, and the 'mas- 
ter curve' for the relaxation modulus vs. frequency or time over a wide range is 
constructed at a chosen reference temperature, e.g., 25~ In the real practice, 
the limited available range of frequencies makes the accurate determination of 
the shift factor difficult. Then there is the question of what to do with the por- 
tion of data taken at temperature below T~. These problems are substantially 
reduced and the confidence limit expanded when the thermodynamic theory be- 
hind the relaxation behavior is utilized. In fact only one set of isochronal data 
obtained at one frequency, such as shown in Fig. 3, is needed to produce a mas- 
ter relaxation curve over a wide range of frequency or time. 

The glass transition as measured by DMA at 1 rad/s takes place at -58~ as 
noted by the maximum in E". The loss modulus closely reflects the relaxation 
spectrum, while tan 5 (E"/E')  is affected by the temperature dependence of E' 
and as a rule the maximum is shifted to a higher temperature than for the maxi- 
mum E". The master curve for the relaxation modulus vs. log time can be 
constructed by replacing the value of the temperature in the original isochronal 
data with log time at -58~ the temperature that divides the equilibrium and 
nonequilibrium regimes. The values of the temperature in the original isochro- 
nal data, which will be termed the variable X from this point, will be first 
converted to log time by invoking the Vogel equation, Eq. [13]. This can be eas- 
ily achieved with a spread sheet program such as Microsoft Excel or Lotus 123. 
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Fig. 3 The elastic (E') and loss (E") moduli data taken at 1 radian/s for a commercial poly- 
isoprene sample 
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Fig. 4 The master relaxation modulus curve calculated from the isochronal data shown in 
Fig. 3, with the reference temperature set at T~ =-58~ 

The values of To of 165 K, logx* of-11.4 s, T" of 773 K and A~t* of 3 kcal were 
used. For these values to be correct, the calculated time at Tg must agree exactly 
with the data. If not, the value of A~* is the first to be adjusted. The tried values 
gave an almost perfect agreement. The formula for logt in seconds is 
11.4-653"(1/X-1/608) above X=-58~ or 215 K. Below Tg, the activation en- 
ergy for the Arrhenius formula is obtained from the slope of a straight line 
between the points (1/773, -11.4) and (1/215, 0.57) and multiplying it by 
2 times 2.3 to obtain the value of 16.4 kcal. Thus the formula for logt below 
X=-58~ is -0.57-3565*(1/X-1/215). The master curve for the relaxation 
modulus at -58~ is constructed from these time temperature converting 
scheme and by assuming the E(t)~E' (o) =1/0; the calculated results are shown 
in Fig. 4. To obtain a master curve at 25~ from the one at -58~ the entire 
curve is shifted to a shorter time scale. For those logt points originating from 
the isochronal data above X> -58~ the shift factor is the -8.14 resulting from 
the Vogel equation, Eq. (13). For those logt point originating from X< -58~ 
however, must be calculated with the Arrhenius formula, i.e., -0.57- 8.14+3565" 
(1/215-1/X). The master curve calculated for 25~ is shown in Fig. 5. The 
'transition region' between the glassy high modulus and the rubbery plateau 
shows the slope of 3/5, which is a typical value observed in the similar master 
curves [12]. This polyisoprene specimen is crosslinked, so there will be no 
therminal drop in modulus for the entanglement/reptation relaxation. If it were 
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Fig. 5 The master curve at 25~ obtained by shifting the calculated master curve for 58~ 
shown in Fig. 4 

not crosslinked, it would have been observed when data were taken up to a suf- 
ficiently high temperature and the instrument is capable of measuring extremely 
low stress levels, if the molecular weight of such a polymer is with a very nar- 
row distribution, the approximation of equating E' to E(t) breaks down, so the 
final master curve should be presented as E' vs. frequency rather than E(t) vs. 
time, but this is a minor point. 

Those points that originated below Tg in Fig. 3 were obtained in the non- 
equilibrium glassy state. As such, the time-temperature superposition does not 
apply, because the slope of logE(t) vs. logt in the glassy state is dependent on 
temperature. For example, the E(10 -13 s) at 25~ in Fig. 5 has been assumed to 
be equal to E(-100~ at 1 rad/s in Fig. 3 but, in reality, being in the equilib- 
rium state at 25~ the modulus at the high frequency extreme should be higher. 
We have a method for deriving the exact values based on irreversible thermody- 
namics in the glassy state [13], but DMA is not the most suitable method to 
explore this frequency regime anyway. 

5. Beyond linear viscoelasticity 

Because linear viscoelasticity holds for the strain levels of only a few percent 
for polymer melts, and even less for the solid polymers, a direct application of 
these data to engineering problems is limited. However, the time dependent me- 
chanical properties of polymers in the nonlinear range can be predicted from 
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viscoplasticity. Viscoplasticity is a combination of viscoelasticity and plasticity. 
It exhibits linear viscoelastic behavior when the stored elastic energy is small 
but diverts to the classical plasticity when the energy reaches a critical yield 
level. The classical plastic behavior is observed in metals when the elastic en- 
ergy exceeds the level that the polycrystalline grain boundaries can sustain. 
These metals are initially elastic until this limit is reached. Polymers, on the 
other hand, are viscoelastic under small strains, and are capable of dissipating 
energy even below that yield limit. So what is the difference between the vis- 
coelastic flow and the plastic flow? 

When a viscoelastic material is deformed at a constant rate, the increasing 
stress eventually reaches a plateau. The value of this plateau is proportional to 
the product, the relaxation time times the strain rate. This is purely a conse- 
quence of the nature of linear viscoelasticity and it is not the yield phenomenon 
we have in mind. The viscoelastic platea u stress can in theory increase indefi- 
nitely as the strain rate is increased. In real polymers, as in any materials, 
surely there is a limiting strength beyond which the structure must break down. 
A mechanism of flow other than the viscoelastic flow is needed at such high 
stress levels. A viscoelastic 'solid' tends to break down when it is made to de- 
form faster than its own pace characterized by the relaxation time. It can still be 
deformed at a rate exceeding 1/x, but it is now undergoing a viscoplastic defor- 
mation. For the material with a greater ~ value, the easier is the transition to 
plastic flow at a slower rate of deformation. If there is a spectrum of many re- 
laxation times within one material, as it is the case with polymers, some part 
will undergo plastic flow while other parts remain linearly viscoelastic. As the 
plastic flow stress is the limiting maximum for the viscoelastic flow at each lim- 
iting speed, the sum total of the stresses arising from a mixture of viscoplastic 
and viscoelastic flows depends on the viscoelastic relaxation spectrum and the 
imposed deformation rate. The overall stress increases with the strain rate, and 
the behavior can be theoretically and quantitatively predicted from the linear 
viscoelastic data. The classical plastic flow is, being the strength behavior, in- 
dependent of the strain rate. A log-log plot of the stress divided by the strain 
rate, i.e., the flow viscosity, vs. the strain rate will have a slope of exactly -1 
for the pure plasticity. The similar plot for the viscoplastic flow will have a less 
steep slope than -1, e.g., -0.8. A linear viscoelastic flow would show the slope 
of 0, and this is called a 'Newtonian' behavior, though the physics involving the 
analogy between this and the flow behavior of a typical fluid is very limited, to 
say the least. The melt viscosity obtained in a large deformation flow in visco- 
plasticity typically closely agrees with the magnitude of the complex dynamic 
viscosity obtained in the linear viscoelastic range with a very small maximum 
strain. This is known among the rheologists as the Cox-Merz rule [17]. 

The theory of viscoplasticity is also useful in polymers in the glassy and 
crystalline states for predicting the stress strain behavior at all temperatures and 
strain rates. In glassy polymers, the behavior is affected by the physical aging, 
but thermodynamic predictions can be carried out with this theory. The possi- 
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bility for predicting the large deformation behavior from the linear viscoelastic 
data extends the usefulness of the linear viscoelastic data on the practical appli- 
cations enormously, making it possible to predict the creep behavior over the 
period of years from DMA data taken only at 1 rad/s. The application of ther- 
modynamics to the understanding of viscoelasticity further realizes the 
usefulness of not only the DMA data but data taken by DSC. From the values 
of Tg and ACp alone, we will not only know how to adjust Tg of a newly formu- 
lated compound but we can also construct a master relaxation curve for such a 
compound at any use temperatures in the glassy, crystalline, and molten states. 

Nomenclature 

Conformer: Smallest unit of relaxation, typically one carbon atom in the chain 
rotating from gauche to trans conformation under the influence of the imposed 
force filed. 
Excess entropy: The effective available conformation entropy Sx, smaller than 
the statistical conformational entropy so, because of the frustration from the 
neighbors in the condensed state. 
Excess enthalpy: The effective available enthalpy Hx; it is smaller than the sta- 
tistical conformational enthalpy, ho, and is approximately equal to TSx. 
Excess volume: Free volume available for cooperative relaxation of the con- 
former. Its value is slightly different from the conventional free volume in the 
Doolittle-WLF equations. 
Viscoelasticity: A rheological behavior characterizable in terms of combined 
elastic and viscous response to imposed stress. Linear viscoelasticity means that 
all viscoelastic coefficients, e.g. moduli, compliances, tan 8, etc. are the func- 
tions of time only, and not on the stress or the strain magnitude. 
Viscoplasticity: A class of rheological behavior which combines the classical 
plasticity and linear viscoelasticity. 
(z relaxation: We mean the cooperative relaxation by the conformers in polymer 
chains that lead to the glass transition by cooling. 
f5 relaxation: Intramolecular cooperative relaxation along several consecutively 
placed conformers along a polymer chain; usually identified as the low tem- 
perature relaxation below Tg, but it can occur above Tg at high frequencies. 
Me: Conformer molecular weight. 
T*: High temperature limit of relaxation above which the barrier energy loses 
its meaning because of large kT. 
To: Extrapolated temperature for zero entropy along the equilibrium liquidus 
line. 
ACp: The step change in the specific heat near Tg, usually reported in units per 
gram. The value is smaller for polymers with higher Tg. 
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A~t: Ala* with the added effect of intermolecular interference to relaxation. 
Ala*: Energy barrier for the relaxation of a conformer without interference from 
neighbors. 

A p p e n d i x  

The entropy associated  with the domains  o f  cooperative relaxation 

From thermodynamics, we write for the Gibbs free energy A~P, 

AUd = AH - TAS (A-l) 

where A refers to the difference between the liquidus and glassy states, and 

dAW 
- SI 

dT 
(A-2) 

and with definitions in Eqs (15) and (18) we obtain: 

dAtP - ACp - s~ - - .  ( T -  To) 
dT T* -To 

: Ac -I ds~ T" j__L_* 1 
LdT " T" - To ( T -  To) + s~ T* - To 

=ACp-ACp T-To S~- T 
T T - T o  

(A-3) 

To _ s x T 
:Ac~ y T-To 

= - -  S x  

from which we obtain the relationship: 

A G =  Sx - -  
T 

T - T o  
(A-4) 

and 

d A q " - -  dT Acv(T- -~)  (A-5) 
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and finally, in the limited temperature range where ACp is not a strong function 
of temperature, as we often assume that the thermal expansion coefficient stays 
constant over a range of temperature for liquids, we can approximate: 

T 

- ACp(T - To) + ACpTo �9 In T ( A - 6 )  
To 

From Eq. (A-6), it can be said that the excess free energy Aq-' is zero at To, and 
increases toward T* but always much smaller than either AH or TAS alone, 
hence the excess enthalpy is relatively close to the value of T times the excess 
entropy, particularly near (but above) Tg. 
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